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Abstract An addition chain is a finite sequence of positive integers 1 = a0 ≤ a1 ≤
· · · ≤ ar = n with the property that for all i > 0 there exists a j, k with ai = a j + ak

and r ≥ i > j ≥ k ≥ 0. An optimal addition chain is one of shortest possible length
r denoted l(n). A new algorithm for calculating optimal addition chains is described.
This algorithm is far faster than the best known methods when used to calculate ranges
of optimal addition chains. When used for single values the algorithm is slower than
the best known methods but does not require the use of tables of pre-computed values.
Hence it is suitable for calculating optimal addition chains for point values above cur-
rently calculated chain limits. The lengths of all optimal addition chains for n ≤ 232

were calculated and the conjecture that l(2n) ≥ l(n) was disproved. Exact equality in
the Scholz–Brauer conjecture l(2n − 1) = l(n)+ n − 1 was confirmed for many new
values.

Keywords Addition chains · Exponentiation · Scholz–Brauer · Sequences ·
Optimization
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1 Introduction

An addition chain A is a finite sequence of positive integers called elements 1 =
a0 ≤ a1 ≤ · · · ≤ ar = n with the property that for all i > 0 there exists a j, k
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266 N. M. Clift

with ai = a j + ak and r ≥ i > j ≥ k ≥ 0. This is called an addition chain of
length r for n. We call n the target of an addition chain. An optimal addition chain
has shortest possible length denoted by l(n) and is a strictly increasing sequence as
duplicate chain elements could be removed to shorten the chain. It is clear that any
addition chain whose elements were not ordered could be simply rearranged to one
that is and any elements greater than the target could be deleted. Chains therefore are
simply defined as being ordered without any loss of generality.

Interest in optimal addition chains arises naturally in systems where all multiplica-
tions have equivalent cost and the evaluation of xn needs to be as quick as possible for
many different values of x with fixed n. The problem appears to have first been con-
sidered in a question [1] and its answer [2] with the term addition chain first appearing
in [3]. The most complete coverage of the subject area appears in [4] and the review
paper [5]. All possible optimal addition chains for 7 are given as an example:

12347, 12357, 12367, 12457, 12467

This illustrates two important points. First that optimal addition chains are not neces-
sarily unique and second that elements of an addition chain may be formed in more
than one way (4 = 3+ 1 or 4 = 2+ 2 in 1 2 3 4 7).

Exponentiation has become important as many cryptographic algorithms have this
operation at their core [6,7]. Optimizing exponentiation can have significant impact
on algorithm run time and many near optimal methods are known [8]. Tables of opti-
mal addition chain lengths have been used to benchmark new algorithms [9]. Many
counterintuitive properties of l(n) are known and this makes the subject interesting to
study.

This paper is organized as follows. We will begin in Sect. 2 with some basic def-
initions commonly used in the literature of addition chains. Then in Sect. 3 we will
outline the graphical representation of addition chains and cover the standard graph
reduction in Sect. 4 that will remove some redundancy in the numerical representa-
tion. In Sect. 5 we will prove that certain graph structures cannot be present in optimal
chains as well as structures that must be present in at least one chain for a particular
target in Sect. 6. These graph techniques will have a large impact on the runtime of
searching for optimal chains. We will develop in Sect. 7 a simple relationship between
the vertex degree of a graph and the complexity of its associated addition chain and this
will enable limiting the search space and naturally lead to a simple and very effective
heuristic for search order. In Sect. 8 we will prove that in some sense deleting addition
chain elements can only make chains more efficient and this will enable us to prune
early during a search based on what we know the chain must contain later. In Sect. 9
we show a simple graph rearrangement that reduces the search space still further.
In Sect. 10 we describe the basic graph enumeration technique used to find optimal
addition chains and introduce a dynamic bounding technique that gradually becomes
more restrictive as solutions are found. In Sect. 11 we will show how to condense
knowledge of later chain construction (driven by required graph structures) into only
two quantities and show how this can be used to prune very early in the search space.
All of the ideas will come together in the pseudo-code of the algorithm in Sect. 12.
In Sect. 13 we will outline the results of running the new algorithm. We will find
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Calculating optimal addition chains 267

counter-examples to some longstanding conjectures, extend some conjectures to new,
much larger limits, exclude the potential of proving the Scholz–Brauer conjecture via
one particular chain type attack and extend the table of some basic functions. Finally
we will cover some future research directions in Sect. 14.

2 Basic definitions

The standard notations of [4] where they exist will be used. The construction of each
element of an addition chain is called a step. For an addition chain 1 = a0 ≤ a1 ≤
· · · ≤ ar = n different step types are classified as follows:

Doubling step: ai = 2ai−1, i > 0
Non-doubling step: ai = a j + ak, i > j > k ≥ 0
Notice that steps of the form ai = 2a j , j ≤ i−2 are defined as non-doubling steps.
The following useful functions are defined: λ(n) = �log2 n�(n ≥ 1) and v(n)(n ≥

1) the number of 1 bits in the binary representation of n:

v(1) = 1, v(2n) = v(n), v(2n + 1) = v(n)+ 1

This definition along with the monotonically increasing definition of the chain and
the fact that ai ≤ 2ai−1(i > 0), gives only two possible step types classified as:

Big step: λ(ai ) = λ(ai−1)+ 1
Small step: λ(ai ) = λ(ai−1)

Doubling steps (or doublings) are always big steps but not all big steps are dou-
blings. This leads naturally [10] to splitting l(n) into two components:

l(n) = λ(n)+ S(n).

The variable portion S(n) ≥ 0 is defined as the number of small steps in an optimal
addition chain for n. Because λ(n) is fixed for a given positive integer, finding optimal
addition chains amounts to minimizing the number of small steps across all possible
chains. Hansen [10] remarked that S(n) could be regarded as a measure of the dif-
ficulty or complexity of a number n and that for each element ai (0 ≤ i ≤ r) in an
optimal addition chain for n we must have S(ai ) ≤ S(n). This notion of complexity
is borne out by computer calculations of optimal addition chains where the dominant
factor in runtime is the small step counts [11, pp 1261–1262].

Given an addition chain A with elements ai (0 ≤ i ≤ r) it is useful to refer to the
number of small steps in the chain up to and including ai . This is denoted by:

SA(ai ) = i − λ(ai ), (i ≥ 0).

Likewise the number of small steps between two elements ai , a j (i ≥ j ≥ 0) is
denoted with:

SA(ai , a j ) = i − j − (λ(ai )− λ(a j )), (i ≥ j ≥ 0).
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Table 1 The two formal chain mappings for the chain 1 2 3 4 7

i 0 1 2 3 4 i 0 1 2 3 4

ai 1 2 = 1+ 1 3 = 2+ 1 4 = 3+ 1 7 = 4+ 3 ai 1 2 = 1+ 1 3 = 2+ 1 4 = 2+ 2 7 = 4+ 3

γ (i) 0 1 2 3 γ (i) 0 1 1 3

aγ (i) 1 2 3 4 aγ (i) 1 2 2 4

δ(i) 0 0 0 2 δ(i) 0 0 1 2

aδ(i) 1 1 1 3 aδ(i) 1 1 2 3

2 3 4 71 2 3 4 71

Fig. 1 The two graphical representations of the optimal addition chain 1 2 3 4 7

Sometimes there is a need to resolve the ambiguity in exactly how a term in an addi-
tion chain is formed. For example if ai = a j + ak then two mappings γ : [1, r ] �→
[0, r − 1], i

γ−→ j, δ : [1, r ] �→ [0, r − 1], i
δ−→ k are defined that describe how the

sum was formed. An addition chain along with these mappings will be called a formal
addition chain. Table 1 shows two formal addition chains for 1,2,3,4,7 differing in the
choice made for the construction of a3 = 4.

3 Graphical representation

A multi-digraph G is a finite non-empty set of objects called vertices denoted by V
with a multi-set of ordered vertex pairs called arcs denoted by E . A multi-set is a set
where duplicate elements are allowed. We say that an arc goes from a vertex u ∈ V
to a vertex v ∈ V if (u, v) ∈ E .

We may represent a formal addition chain A of length r as an acyclic multi-digraph
by taking each chain element as a vertex with arcs from the two elements used to
form it via addition (except the element 1 that is the starting point of the chain)
[4, pp 480–481]. Formally for an addition chain A of length r we have a multi-
digraph G A = (V, E, α, ω) where V is the set of vertices, E the set of arcs and
α, ω are mappings that take an arc to its start and end vertex respectively. This gives
V = {vi : 0 ≤ i ≤ r} and E = {(vγ (i), vi ), (vδ(i), vi ) : 1 ≤ i ≤ r}, α, ω : E �→
V, (v1, v2)

α−→ v1, (v1, v2)
ω−→ v2. We label each vertex with its numerical value

from the addition chain. The graphical representation of an addition chain appeared
in [12] derived from a usage in [13].

See Fig. 1 for an example where the optimal addition chain 1, 2, 3, 4, 7 is repre-
sented graphically as two graphs because of the ambiguity in the construction of the
value 4 (1+3 or 2+2).
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Calculating optimal addition chains 269

The vertex and arc sets for the first graph in Fig. 1 using the vertex labels for clar-
ity are V = {1, 2, 3, 4, 7} and E = {(1, 2), (1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (3, 7),

(4, 7)}. This clearly shows the multi-set nature of the arc set due to the two arcs
between vertex 1 and 2.

We define the in-degree of a vertex d+(v) = |{e ∈ E : ω(e) = v}| and the out-
degree in a similar way d−(v) = |{e ∈ E : α(e) = v}|. Each graph will have an
in-degree of 2 for each vertex except for the single vertex labeled 1. This we call the
source of the graph or source vertex. In a graph for an optimal addition chain each ver-
tex except for the single vertex labeled with the target has an out-degree of at least 1. If
a vertex other than the target had an out-degree of 0 then this vertex and its associated
edges could be deleted leading to a shorter chain. The vertex would have represented an
element calculated in the chain that was not used in the construction of the target. We
call the vertex associated with the target with 0 out-degree the sink vertex. We define
the in-degree from vertex u to vertex v by d+(u, v) = |{e ∈ E : α(e) = u, ω(e) = v}|.
If we have multiple arcs between two vertices (d+(u, v) > 1) then we describe these
as parallel arcs.

3.1 Path counts and addition chain lengths

For an addition chain A with associated graph G = (V, E, α, ω), we define a path
count operator that gives the total number of paths from the source vertex (v0 ∈ V )

to the given vertex:

p(vi ) =
{

1, if i = 0∑
e∈E,ω(e)=vi

p(α(e)), if i > 0

We have the relationship that p(vi ) = ai and hence our vertex labels correspond to
path counts. We can prove this with induction on vi (0 ≤ i ≤ r), the vertices derived
from the addition chain elements ai (0 ≤ i ≤ r). By definition p(v0) = 1 = a0 and
we assume the relationship is true for 0 ≤ i ≤ r. We show that the property holds for
i + 1 and hence the relationship always holds:

p(vi+1) =
∑

e∈E,ω(e)=vi+1

p(α(e)) =
∑

j∈{γ (i+1),δ(i+1)}
a j = ai+1

Given an arbitrary acyclic graph G = (V, E, α, ω) with a single source v0 ∈ V and
d+(v) = 2,∀v ∈ V \v0 we can construct an associated addition chain A. We do this
without loss of generality by labeling the vertices such that p(v0) ≤ p(v1) ≤ · · · ≤
p(v|V |−1) and form ai = p(vi ). This vertex ordering will be used often and we will
call it path count order.

We can obtain the length r of an associated addition chain for a graph G =
(V, E, α, ω) from:

r = |E | − |V | + 1 since |E | = 2(|V | − 1) and |V | = r + 1.
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Fig. 2 Reduction and expansion of a graph with a vertex with an out-degree of one

3 71 2 17

Fig. 3 Conversion of a graph to its dual

This holds because there are two arcs that enter each vertex apart from the source. We
use the more complex formula rather than |V | − 1 as this will be invariant under later
rearrangements where we delete vertices and arcs.

4 Graph reduction

The sequence form of an addition chain often hides a redundancy in the representation
that becomes clear in the graphical representation [4, p 480]. Let A be an optimal addi-
tion chain of length r with associated graph G = (V, E, α, ω) and v0, . . . , v|V |−1 ∈ V
in path count order. If we have a vertex v ∈ V with d−(v) = 1 we find that the arc
e ∈ E with α(e) = v leads to a vertex u with ω(e) = u and hence u is formed by the
sum of paths from 3 vertices that can be taken in any order. We can make this more
explicit by deleting the vertex v and arc e and changing all arcs that terminate at v to
instead terminate at u. This process called reduction is reversible (called expansion)
and allows the transformation of one chain into another by taking the vertices in differ-
ent orders when expanding. This transformation is shown in Fig. 2. This reduction can
be applied iteratively until ∀v ∈ V \{v|V |−1}, d−(v) ≥ 2. The resulting graph G ′ is
called the reduced graph of G associated with addition chain A. Reduction preserves
the property that r = |E | − |V | + 1 since each reduction reduces both the number of
vertices and arcs by 1. Path counts are also preserved for the remaining vertices.

An interesting property of reduced graphs of optimal addition chains is that we may
form the dual G ′ of a reduced graph G by reversing all the arcs [12]. The source and
sink reverse roles but the path count remains the same for the target. Hence the dual
is a potentially different optimal addition chain for the same target. Fig. 3 shows the
reduced graph for the addition chain 1 2 3 6 7 and its dual to which a different addition
chain 1 2 3 5 7 is associated.

Let us now by way of illustration manually expand the reduced graph of the dual
in Fig. 3 to obtain all the addition chains it is associated with. Vertex 1 by definition
represents the addition chain element 1. Vertex 2 is formed by the sum of only two
values and that can be performed in only 1 way. This gives us A = 1, 2, . . . . Vertex
7 is formed by the sum of 4 values and there are 2 different ways of starting (1+2 or
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Fig. 4 Multiple sets of parallel
arcs in the construction of a
vertex and its dual

v wu y zx

2+2). So we obtain A =
{

1, 2, 3, . . .

1, 2, 4, . . .
In the first case we have 2 arcs from 2 and one

from 3 used to construct 7 and so we have two ways to proceed (2 + 2 or 3 + 2). In
the second case we have 1 arc from each of 1,2 and 4 used to construct 7 and so we
have 3 different ways of proceeding (4+ 2, 4+ 1 or 2+ 1).

This yields A =

⎧⎪⎪⎨
⎪⎪⎩

1, 2, 3, 4, 7
1, 2, 3, 5, 7
1, 2, 4, 6, 7
1, 2, 4, 5, 7

after sorting and removing duplicates.

In [14] it was proved that graph reduction partitions the set of formal addition chains
for a specific target into equivalence classes.

5 Impossible graph structures

We will now describe some limits to parallel arcs in optimal chains. Firstly we may
have no more than 3 parallel arcs:

Theorem A (Flammenkamp 1999) For an optimal addition chain A with associated
reduced graph G = (V, E, α, ω) we must have ∀u, v ∈ V, d+(u, v) ≤ 3. This
appears as Lemma 2 in [15].

Secondly we can only have parallel arcs from at most one vertex in the construction
of another vertex. See the left graph fragment in Fig. 4. By looking at the dual we can
deduce that each vertex can only be used at most once with parallel arcs. See Fig. 4
for the transformation.

Theorem B For an optimal addition chain A with associated reduced graph G =
(V, E, α, ω) we must have ∀u, v, w ∈ V, u �= v,w �= v,w �= u, d+(u, w) ≤ 1 or
d+(v,w) ≤ 1.

Proof We assume contrary to the Theorem that we have a vertex pair u, v ∈ V both
used with parallel arcs in the construction of the vertex w ∈ V . We can expand a portion
of the chain numerically to give p(u), 2p(u), 2p(u)+ p(v), 2p(u)+2p(v), . . . , . We
could however produce a shorter chain than this by forming p(u), p(u)+p(v), 2p(u)+
2p(v), . . . , so the chain could not have been optimal which is a contradiction. �

Corollary By considering the dual G ′ = (V ′, E ′, α′, ω′) of the reduced graph G in
Theorem B we may deduce that ∀u, v, w ∈ V ′, v �= w, d+(u, v)≤1 or d+(u, w)≤1.

6 Required graph structures

It is clear from Theorem A that any reduced graph for an optimal formal addition
chain must start in one of three ways. We label the vertices in path count order as
v0, . . . , v|V |−1 :
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2 61 3 61

Fig. 5 Moving a doubling from the start to the end of a graph

1) p(v0) = 1, |V | = 1
2) p(v0) = 1, p(v1) = 2, |V | > 1
3) p(v0) = 1, p(v1) = 3, |V | > 1

This arises simply because of the imposed limits on the number of arcs in an optimal
formal chain’s associated reduced graph. Case 1 is the special addition chain for 1 that
has no arcs.

For numbers requiring small steps in their addition chains there is always an addi-
tion chain that uses the value 1 at least three times leading to at least two odd values
in the chain. To prove this we will use the transformation depicted in Fig. 5.

Theorem C There must exist in the set of all optimal addition chains for n with
S(n) ≥ 1 at least one formal addition chain A and its associated reduced graph
G = (V, E, α, ω) in path count order with d−(v0) ≥ 3, v0 ∈ V .

Proof Assume that A is an arbitrary optimal addition chain for an arbitrary n with
S(n) ≥ 1. In the associated reduced graph if d−(v0) > 2 then this addition chain
satisfies the Theorem so we may assume that d−(v0) ≤ 2. If d−(v0) = 0 then this
must be the addition chain for n = 1 but that contradicts S(n) ≥ 1. d−(v0) = 1 would
have been eliminated in the graph reduction process leaving the only possibility as
d−(v0) = 2. The chain must start 1, 2, . . . , with no further references to 1 (see the
first graph in Fig. 5 as an example). Hence all addition chain elements except the first
are even. We can divide each element of the chain apart from the first by 2 and move
the first doubling step to the end of the chain so it ends . . . , n/2, n. This process can
be iteratively applied to find a graph with the required properties, otherwise it never
terminates when the addition chain contains only doubling steps and hence would
have S(n) = 0. �

Theorem D If all optimal formal addition chains for n with S(n) ≥ 2 and their
associated reduced graphs with vertices in path count order begin as case 3 above
(p(v1) = 3) then there must exist at least one optimal formal addition chain A
for n and its associated reduced graph G = (V, E, α, ω) in path count order with
d−(v0) ≥ 4, v0 ∈ V .

Proof Assume that n is a counter example to the Theorem and select an arbitrary
formal optimal addition chain A for n. The associated reduced graph for A is G =
(V, E, α, ω) with the vertices in path count order. We must have d−(v0) ≤ 3 and, in
fact d−(v0) = 3 since p(v1) = 3. The vertex describes the starting value 1 and we
must have n = 3m, m ∈ N. This follows because there must be no further references
to 1 after the formation of 3 forcing all elements starting with 3 to be multiples of 3.
If |V | = 2 then this is the addition chain 1, 2, 3 corresponding to the reduced graph,
and this is not possible since the addition chain has one small step but it is given that
S(n) ≥ 2. Hence, |V | > 2.
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Calculating optimal addition chains 273

The original addition chain A can be transformed into formal optimal addition
chain A′ for n by removing the first two elements (1,2) and dividing the remain-
ing elements by 3. This will yield an addition chain for m that can be extended to
form an addition chain for n by the addition of the elements 2m, 3m to the end. This
formal addition chain must be optimal as it is the same length as the original chain
A. The associated reduced graph for A′ is G ′ = (V ′, E ′, α′, ω′) with the vertices
(v′x ∈ V ′, 0 ≤ x < |V ′|) in path count order.

We can now assert that p(v2) = 9 otherwise p(v′1) �= 3 in A′ contrary to the given
that p(v′1) = 3 for all addition chains for n. Likewise we must have d−(v1) = 3
otherwise d−(v′0) > 3 contrary to n being a counter example to the Theorem.

In summary we must have p(v0) = 1, p(v1) = 3, p(v2) = 9, d−(v1) = 3, and
this chain could be rearranged as 1,2,4,8,9, which is a contradiction for the need to
start the reduced graph 1,3. �

Theorems C and D allow us to consider only graphs with the required out-degree for
the source vertex and hence reduce the number of cases we need to consider. We will
introduce other chain rearrangements but they will not reduce the out-degree of the
source vertex.

7 In/out-degree limits

It is natural to ask what are the limits of the in/out degree of a vertex in a reduced
graph for an associated optimal addition chain for n. Bounding this will enable enu-
meration to be faster by limiting the cases needed to be considered and will also hint
at a heuristic for searching the graph space.

Lemma E For all n, m ∈ N+ we have λ(n)+ λ(m) ≤ λ(nm) ≤ λ(n)+ λ(m)+ 1. If
n or m is a power of 2 then λ(n)+ λ(m) = λ(nm).

Proof By definition we have 2λ(n) ≤ n < 2λ(n)+1 and 2λ(m) ≤ m < 2λ(m)+1 and
hence 2λ(n)+λ(m) ≤ nm < 2λ(n)+λ(m)+2. Applying λ to each value yields the required
result. Without loss of generality, if we assume that n is a power of two then 2λ(n) = n
and hence 2λ(n)+λ(m) ≤ nm < 2λ(n)+λ(m)+1. Once again applying λ to each value
yields the required result. �

Theorem F For all optimal formal addition chains for an arbitrary target n each
with associated reduced graph G = (V, E, α, ω) we have ∀v ∈ V, d−(v) ≤ S(n) +
2, d+(v) ≤ S(n)+ 2.

Proof We will prove the result for ∀v ∈ V, d+(v) and an examination of the dual
graph will extend the proof to d−(v).

We consider an arbitrary optimal addition chain A for n and its associated reduced
graph G = (V, E, α, ω). Now select an arbitrary vertex v ∈ V corresponding to chain
element ax . The path count of vertex v is the sum of q = d+(v) ≥ 2 path counts
labeled in non-decreasing value as w1 ≤ w2 ≤ · · · ≤ wq . Hence ax = ∑q

i=1 wi .

From Theorems A and B in an optimal chain we may have at most 3 wi that are equal,
the rest being distinct. We may maximize our sum by setting w1 < w2 < · · · <
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wq−2 = wq−1 = wq . Any other sum selecting a different element to duplicate (or
not duplicating any element) must be less than this one. For each wi value there is a
corresponding addition chain value abi = wi (1 ≤ i ≤ q). The strict ordering of the wi

values requires that b1 < b2 < · · · < bq−2 = bq−1 = bq . Since elements of an addi-
tion chain can at most be doubled at each step, we know that abi ≤ 2bi (1 ≤ i ≤ q). The
sum ax = ∑q

i=1 wi ≤ ∑q
i=1 2bi is maximized by selecting adjacent chain elements

butted next to abq so that bi = bq+ i−q+2(1 ≤ i ≤ q−2) giving ax ≤∑q
i=1 2bi ≤

2bq+1 +∑q−2
i=1 2bq+i−q+2 = 2bq−q+2(2q − 2). Since S(n) ≥ SA(ax ) = x − λ(ax )

and x ≥ bq + q − 1 hence S(n) ≥ bq + q − 1− λ(2bq−q+2(2q − 2)) = q − 2. �

Corollary To bound the in-degree of a vertex v in a reduced graph in [16,14] the
authors used the bound ax ≤ wq where w = max{p(α(e)) : e ∈ E, ω(e) = v}
and ax is the addition chain element corresponding to vertex v. This can be used to
place a lower bound on the number of small steps the construction of a particular
vertex must add to an addition chain. SA(ax , abq ) = x − bq − (λ(ax ) − λ(abq )) ≥
q − 1 − (λ(wq) − λ(w)). From Lemma E we have λ(wq) ≤ λ(w) + λ(q) and if
q is a power of 2 then λ(wq) = λ(w) + λ(q). These may be combined to form
λ(wq) ≤ λ(w) + �log2(q)�. This yields SA(ax , abq ) ≥ q − �log2(q)� − 1. Clearly
then, as q grows the number of small steps grows and the chain becomes inefficient.
A possible heuristic is to search for graphs with small q first and this is borne out in
experiments.

8 The effect of deleting addition chain elements

We now investigate the effect of deleting an addition chain element. We will find that
deleting elements can only make the small step counts of chains stay the same or
reduce. This observation helps answer questions of ’best possible’ target values for
addition chains with certain requirements.

Lemma G If a formal addition chain A with elements 1 = a0 ≤ · · · ≤ ak ≤ · · · ≤
a j ≤ · · · ≤ ai = a j + ak ≤ · · · ≤ ar = n, r ≥ i > j ≥ k ≥ 0 is converted to an
addition chain A′ for target n′ by changing all elements of the chain that use ai to
instead use a j and deleting the element ai , then 2n′ ≥ n and hence SA(n) ≥ SA′(n′).
More formally if the elements of A′ are a′l(0 ≤ l < r) then:

a′l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

al , if l < i

a′j + a′j if i ≤ l ≤ r − 1, γ (l + 1) = i and δ(l + 1) = i

a′γ (l+1) + a′j , if i ≤ l ≤ r − 1, δ(l + 1) = i

a′j + a′δ(l+1), if i ≤ l ≤ r − 1, γ (l + 1) = i

a′γ (l+1) + a′δ(l+1), otherwise

It should be pointed out that the functions γ and δ relate to the addition chain A and
are used in the formation of addition chain A′.
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Calculating optimal addition chains 275

We give an example of an optimal addition chain for 19 where we delete the
element 3:

1, 2, 3, 6, 9, 18, 19⇒ 1, 2, 4, 6, 12, 13

In this example we obtain the value 4 from the value 6 by observing that 6 = 3 + 3
and all usages of 3 have been replaced by 2. Similarly we obtain the value 6 from the
value 9 by observing that 9 = 6 + 3 and 6 has been replaced by 4 and 3 has been
replaced by 2 and so on.

Proof We define a sequence of coefficients Cm =< cm,l : 0 ≤ l ≤ r > (0 ≤ m ≤ r)

such that am = ∑r
l=0 cm,lal . We will fix all cm,l = 0 for l > m. We will show

how to build the sequences such that they reflect the chain structure from a partic-
ular point and can then show how the chain values change when we delete a given

element. For 0 ≤ m < i we set cm,l =
{

0, l �= m
1, l = m

for all 0 ≤ l ≤ r. Clearly

cm,l ≥ 0(0 ≤ m < i, 0 ≤ l ≤ r). For i ≤ m ≤ r we set cm,l = cγ (m),l + cδ(m),l ≥ 0
for 0 ≤ l ≤ r and hence am = ∑r

l=0 cm,lal . Hence we define each addition chain
element am( j < m ≤ r) as a non-negative linear combination of the elements ap(0 ≤
p ≤ r) in such a way as to reflect chain construction. Hence we may express n
as a linear combination of the terms n = ∑r

l=0 cr,lal = T + cr, j a j + cr,i ai where

T =∑r,l �=i,l �= j
l=0 cr,lal is the sum of all the other terms. When we replace all the usages

of ai by a j we know exactly how this will change the target value n′ if we know the
linear combination coefficients cr, j and cr,i . We obtain n′ = T +cr, j a j+cr,i a j giving
2n′ − n = T + cr, j a j + cr,i (2a j − ai ). Since ai ≤ 2a j we have 2n′ − n ≥ 0. �

The coefficient construction used in Lemma G is made clear by viewing an addi-
tion chain symbolically and expanding terms that are above the truncation point. For
example consider the addition chain

a0 = 1, a1 = 2, a2 = 4, a3 = 8, a4 = 16, a5 = 20, a6 = 36, a7 = 37, a8 = 57.

We can set the truncation point at i = 4 and then substitute

a8 = a7 + a5, a7 = a6 + a0, a6 = a5 + a4, a5 = a4 + a2.

This yields:

a0 = 1, a1 = 2, a2 = 4, a3 = 8, a4 = 16, a5 = 20 = a2 + a4, a6 = 36 = a2 + 2a4,

a7 = 37 = a0 + a2 + 2a4, a8 = 57 = a0 + 2a2 + 3a4.

9 Graph rearrangements

A rearrangement from one graph form to another is now shown. The patterns trans-
formed are quite common in optimal addition chains and hence this rearrangement
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2j i kj 2j i+j kj i

Fig. 6 Graph rearrangement used in Theorem H

has a significant impact on search times. See Fig. 6 for a graphical view of the trans-
formation.

Theorem H In the set of formal optimal addition chains for an arbitrary n of length
r there must exist at least one addition chain A with associated reduced graph
G = (V, E, α, ω) with no three distinct arcs terminating at the same vertex (e, f, g ∈
E, ω(e) = ω( f ) = ω(g)) with at least two parallel (α(e) = α( f )) such that
d+(α(g)) = 2 and ∃h, l ∈ E, α(h) = α(l), ω(h) = ω(l) = α(g).

Proof We select an arbitrary optimal formal addition chain for n and look at its graph
for the described pattern. If it does not have the pattern then the assertion that at least one
addition chain does not have it is true. Otherwise it must have a match for this pattern
in one or more places and we can pick the pattern whose e, f arcs attach to the largest
vertex ω(e) in order of path count. We may have the pattern match more than once
for the same vertex in which case we pick one at random. We can then eliminate this
pattern in this one place by considering the following addition chain expanded from the
graph 1, . . . , a j , . . . , 2a j , . . . , ai , 2ai , 2ai + 2a j , . . . , n with ai = p(α( f )), 2a j =
p(α(g)). We can form the alternate chain 1, . . . , a j , . . . , 2a j , . . . , ai , ai + a j , 2ai +
2a j , . . . , n which does not have the pattern beyond any vertex with a path count
> p(ω(e)). The number of matches to the pattern for the vertex ω(e) has been reduced
by 1. It can be seen that the chain lengths remain the same by considering that both
the arc and vertex count increase by 1 keeping |E | − |V | + 1 invariant. We can repeat
this operation until the graph does not contain the pattern. �


10 Enumerating reduced graphs

We can deconstruct a reduced graph G = (V, E, α, ω) in path count order (v0, . . . ,

v|V |−1 ∈ V ) with |V | > 1 associated with an optimal formal addition chain by pro-
ducing a graph minor by deleting the last vertex v|V |−1 and its associated arcs. By
repeating this process we eventually reach the graph containing only the single source
vertex v0. The intermediate graphs will not necessarily be reduced graphs because
they may not satisfy the out-degree requirements as we have deleted arcs. We will
call such a graph deficient and talk of the set of deficient vertices as the set of vertices
whose out-degree is too small. We can reverse this process starting with the vertex v0
representing 1 and creating all possible vertices v1 by adding 2 or more arcs to the
existing graph. Recursively doing this can enable us to enumerate all possible reduced
graphs with prescribed properties (for numbers less than particular bounds or with a
particular number of small steps). We can limit the search space extensively by not
enumerating any graphs with known patterns described above that would make them
non-optimal. We can also avoid any graphs that could be rearranged to other forms
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as we will search their space in different branches of the tree. As mentioned earlier,
we will generate deficient graphs in our search. By tracking all the deficient vertices
and incorporating them into a simple bound to be described next, we can prune well
in advance of their usage.

In [11] an extensive set of bounds was developed to make searching for addition
chains efficient. We will take the most trivial bound (class A) but use it in a way that
is reminiscent of the slant bounds developed in the same paper. We will focus on
enumerating all addition chain targets n within a particular range L ≤ n ≤ U with
S(n) ≤ s. Other possibilities could be fruitful but have not been investigated.

A bounding sequence B(U, s) =< b0, b1, . . . , bλ(U )+s > is constructed so that
the partial addition chain a0, a1, . . . , ai only has to be considered further if ai ≥ bi .

Since we can convert our partial reduced graphs to addition chains as we build them
if we have a suitable bounding sequence, we can use this to prune graphs from our
search. We may initialize our bounding sequence with the following simple Theorem:

Theorem I When enumerating all optimal addition chains for n ≤ U with S(n) ≤ s
a suitable first bounding sequence is B(U, s) =< b0, b1, . . . , bλ(U )+s > defined by
bi = 2i−s(0 ≤ i ≤ λ(U )+ s).

Proof For an arbitrary addition chain A, if at position i we have ai < bi = 2i−s

then we must have i ≥ s since 0 < ai . From this we obtain SA(ai ) = i − λ(ai ) >

i − λ(bi ) = s. So any resulting chain would have too many small steps to be valid for
the enumeration. Since we are only enumerating addition chains for targets n ≤ U
then if n = ai occurred in a chain at position i > λ(U )+ s then SA(ai ) = i −λ(ai ) >

λ(U ) + s − λ(U ) = s and hence this chain would have too many small steps to be
part of the enumeration. �

We may improve the bounds (make them tighter) and hence improve the runtime of
the enumeration by changing them in response to targets of addition chains found. We
define a function that keeps track of addition chains found so far

ρ(n, s) =
{

1, S(n) ≤ s is known
0, S(n) is unknown

.

Clearly this could be implemented as a simple bitmap. We can now show a simple
method of updating the bounds at runtime as new targets are discovered:

Theorem J When enumerating all optimal addition chains for n ≤ U with S(n) ≤ s
a bounding sequence B(U, s) =< b0, b1, . . . , bλ(U )+s > may be improved for an
arbitrary element bi ← b′i = bi + 1 if ρ(bi , s) = 1 and i = λ(U )+ s or 2bi < bi+1
or bi+1 > U.

Proof The new bounds affect only partial addition chains that begin a0, . . . , ai =
bi , . . . , ar = n. These would be accepted by the old bound and rejected by the new
bound. There are two cases to consider. The first case we may have is i = r and hence
bi = n. This case is the only case to consider if i = λ(U ) + s or bi+1 > U as this
partial chain must be complete. Since ρ(bi , s) = 1 we have already noted this target
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in our enumeration and we do not need to examine it again. The second case is i < r
but since ai+1 ≤ 2ai = 2bi < bi+1 we know that any continuation of this addition
chain will be pruned. �

A bounding sequence as defined by Theorems I and J can be used to prune a partial
chain with a ‘best possible’ set of targets. For example, if it is known that some con-
straints in the construction of a chain limit the upper bounds of addition chain values at
different positions and that all chains must be long enough to reach the positions, then
these ‘best possible’ targets can be pruned with the previously described bounding
sequences. This is shown in the following Theorem.

Theorem K A is an arbitrary optimal addition chain of length r for target n trun-
cated at position 0 < t < r. We have a bounding sequence B(U, s) =< b0, b1, . . . ,

bλ(U )+s > as defined in Theorems I and J. If we know that from some position p with
t < p ≤ r that ar ≤ 2r−pm p and m p < bp then this partial chain may be pruned
away.

Proof Since we have m p < bp and from Theorems I and J we have 2bp ≤ bp+1 or
bp+1 > U we know that ar ≤ 2r−pm p < 2r−pbp ≤ br or ar > U. In either case this
partial addition chain cannot lead to anything new. �


11 Pruning partial addition chains based on subsequent element usage

As mentioned above, during graph enumeration we will likely generate deficient
graphs. These graphs can be converted to partial addition chains that require future
elements to use particular values some minimal number of times to be valid. These
additional references satisfy the minimum degree requirements of the reduced graph.
We will now show how to incorporate the information about the deficient graph into
two variables and use this to prune the partial chains and hence the partial graphs at a
much earlier point in the enumeration.

Lemma L An optimal addition chain A of length r for an arbitrary target n is trun-
cated at position t (0 ≤ t < r). The partial chain is thus a0, . . . , at . If we know
that future elements of the addition chain must use certain elements (avi , 1 ≤ i ≤
f, f ≥ 2 not necessarily distinct) from the partial chain in their sum, then n ≤
2r−t− f+1 ∑i≤ f

i=1 avi and S(n) ≥ t + f − 1 − λ(
∑i≤ f

i=1 avi ). In essence, our target
number is maximized by using all the required elements immediately rather than
delaying their use and can be represented by the ‘best possible’ chain a0, . . . at , av1+
av2 , av1 + av2 + av3 , . . . ,

∑i≤ f
i=1 avi followed by doublings.

Proof We will show this result by taking a counter example chain A truncated at
position t (0 ≤ t < r) with smallest length r and largest target n amongst those of the
same length. The chain after the truncation point requires the use of not necessarily
distinct elements avi , 1 ≤ i ≤ f, f ≥ 2 called back references. We say that a back
reference is satisfied if it is used in the construction of an element. A counter example
must have n > 2r−t− f+1 ∑i≤ f

i=1 avi . Converting to small step counts on each side will
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yield S(n) < t+ f −1−λ(
∑i≤ f

i=1 avi ). By examining each possible way at+1 may be
constructed we will show that an alternate chain A′ with target n′ conforming to the
construction of the ‘best possible’ chain has either n′ ≥ n with length r or 2n′ ≥ n
with length r − 1 in contradiction to the counter example selection. If t + 1 < r we
may move the truncation point to position t + 1 by looking at the construction of
element at+1. We form a new list of back references by removing those satisfied by
the construction of at+1. If all back references have been satisfied then the Lemma is
trivially true since f = 2 which requires at+1 = av1 + av2 and the rest of the chain
can do no better than doubling the last element repeatedly. If all back references have
not been satisfied we must add a new back reference for at+1 since an optimal chain
must use all elements except the last. We may form element at+1 in one of 4 ways:

at+1 =

⎧⎪⎪⎨
⎪⎪⎩

av j + avk (1 ≤ j, k ≤ f, j �= k) Type 1
a j + ak(a j , ak /∈ {avi : 1 ≤ i ≤ f }) Type 2
av j + at (1 ≤ j ≤ f ) Type 3
av j + ak(1 ≤ j ≤ f, 1 ≤ k < t) Type 4

Type 1:

Element at+1’s construction follows the best possible pattern described above and
we may examine the same chain truncated at element t + 1 instead. A valid counter
example must therefore have a step of type > 1.

Type 2:

Element at+1’s construction satisfies no back references and so it may be deleted
to form a new addition chain A′ with target n′. By Lemma G the new target n′ for
the chain of length r − 1 must have 2n′ ≥ n. This is in contradiction to the counter
example selection. A valid counter example must therefore have a step of type > 2.

Type 3:

An optimal chain must make use of all elements except the last. Therefore we must
have at = avk for at least one 1 ≤ k ≤ f. In order not to be a step of type 1 we
would require j = k and hence there is only one back reference to av j satisfied by step
t + 1. An optimal chain must use element at+1 in some future step as = at+1 + au

with t + 1 < s ≤ r, 0 ≤ u ≤ r. We may form a new addition chain A′ with target n′
and elements a′i (0 ≤ i ≤ r − 1) by deleting element at+1 causing a′s−1 = a′t + a′v
which will satisfy the back reference satisfied by step t + 1 later. By Lemma G the
new target n′ for the chain of length r − 1 must have 2n′ ≥ n. This is in contradiction
to the counter example selection. A valid counter example must therefore have a step
of type > 3.

Type 4:

We have at+1 = av j + ak(1 ≤ j ≤ f, 1 ≤ k < t). We may form a new addition
chain A′ with target n′ with length r and elements a′i (0 ≤ i ≤ r) by instead form-
ing a′t+1 = a′v j

+ a′t . This new chain must have n′ ≥ n since ak < at which is a
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Fig. 7 A graph with deficient
vertices 1, 8, 10 and 12

1 2 4 8 10 12

contradiction to the counter example selection. This has exhausted all chain element
types and the Lemma is proved. �

Example Let us assume that in the partial addition chain 1, 2, 4, 8, 10, 12 obtained
while searching for numbers requiring 3 small steps we somehow know that chain
elements 1,8,10 and 12 all need additional references. Lemma L tells us that the ‘best
possible’ optimal chain under these constraints is 1, 2, 4, 8, 10, 12, 22, 30, 31, . . . ,

2d31 which has 4 small steps. This partial chain can be rejected at this point even
though there are a number of ways to continue the chain within the 3 small step limit.
The eventual use of the required chain elements will always create too many small
steps.

Remark This method along with Lemma G and similar arguments to Theorem F can
be used to show that if the computation of an optimal addition chain for n requires t
temporary variables then S(n) ≥ t − 1.

Theorem M An optimal addition chain A for target n > 1 with reduced graph
G = (V, E, α, ω) can be truncated by removing all vertices with path counts greater
than some threshold n > T > 1 and their associated arcs to create the graph G ′
with an associated addition chain A′. This creates a deficient reduced graph. If we
label the not necessarily unique deficient vertices v1, . . . , v f , f ≥ 2 then we have

n ≤ 2r−r ′− f+1 ∑i≤ f
i=1 p(vi ) where r = |E | − |V | + 1 and r ′ = |E ′| − |V ′| + 1 are

the lengths of the associated addition chains of A and A′ respectively.

Proof Some vertices have been removed because n > T so at a minimum the last
vertex (by path count) has been removed. The vertex in G ′ with largest path count
will need at least two arcs to satisfy the requirements of a reduced graph. This means
that G ′ is deficient and we can label the deficient vertices v1, . . . , v f , f ≥ 2. From

Lemma L we have n ≤ 2r−r ′− f+1 ∑i≤ f
i=1 p(vi ). �


We return to the example given for Lemma L and show how this example is derived
from a deficient graph that is seen while enumerating 3 small step numbers. Fig. 7
shows a deficient reduced graph. The deficient vertices are 8 and 10 because they only
have out-degrees of 1. This will cause additional vertices of greater path counts to be
required making vertex 12 deficient. Theorem C tells us we need an out-degree of at
least 3 for vertex 1 making that deficient also.

12 Algorithm

A backtracking algorithm will now be described to calculate all possible numbers
within an interval ([L , U ]) that have addition chains with s small steps. The algorithm
will operate on the following variables:
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List of ordered vertices V =< v0, . . . , vw > in path count order. Bounding
sequence B(U, s) =< b0, b1, . . . , bλ(U )+s > maintained as per Theorems I and J.

List of addition chain elements A =< a0, . . . , ar > not necessarily ordered. c the
count including multiplicities of the number of deficient vertices in V . t the sum of
the path counts of the deficient vertices in V .

We initialize the variables and begin enumerating as follows:

procedure EnumerateReachableNumbers (s):
begin

t ← 0; c← 0;
if s > 0 then t ← 1; c← 1; » we need three references to 1
w← 0; r ← 0;
V ←< v0 >; a0 ← 1; A←< a0 >, p(v0)← 1;
RecordAndAddNewVertex(s, V, A, t, c, w, r);

end

This initialization corresponds to the simplest optimal addition chain for the target 1.
The main driving force in the program takes the existing list of vertices, records

the target reached if needed, and transitions it to a new list with an additional vertex
vw+1.

procedure RecordAndAddNewVertex (s, V, A, t, c, w, r) :
begin

» if not deficient, record we reached ar and update the bounding sequence if
needed
if c = 0 and ar ≥ L and ar ≤ U then
begin

ρ(ar )← 1;
Update bounding sequence B if needed;

end
» record the fact that the vertex vw requires at least two usages to not be deficient

c← c + 2; t ← t + 2p(vw);

» we need four references to 1 for the special case of graphs starting 1,3
if s > 1 and w = 1 and p(vw) = 3 then c← c + 1; t ← t + 1;
If r + c − 1 > λ(U )+ s then return as this chain would be too long
If t < br+c−1 and t ≤ U then return as this chain cannot reach anything new
» loop over all possible in-degree values of a new vertex
for q ← 2 until min(s + 2, λ(U )+ s − r + 1 do
begin

Select q not necessarily unique vertices avoiding the patterns described earlier;
» Avoid selecting the same vertex more than three times.
» Avoid selecting any two vertices multiple times.
» Avoid parallel arcs from more than one vertex.
» Avoid parallel arcs to a vertex that already has parallel arcs to another vertex.
» Avoid creating the pattern described in Theorem H.
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» Avoid creating a new vertex that is smaller than the previous or out of the
bounds [L , U ].
Form a new vertex vw+1 by adding arcs to each selected vertex;
Form ar+1, . . . , ar+q−1 by taking the sums of the path counts of the selected
vertices in an arbitrary order;

A′ ← A+ < ar+1, . . . , ar+q−1 >;
V ′ ← V+ < vw+1 >;

Form t ′, c′ from t, c by subtracting out any vertex that was deficient and was
used by the vertex selection;
RecordAndAddNewVertex (s, V ′, A′, t ′, c′, w + 1, r + q − 1);

end
end

13 Results

The enumeration algorithm was used to find all l(n) with n ≤ 232 by enumerating
all n with S(n) ≤ 7 and doing limited enumeration to fill in the gaps with S(n) = 8.

The runtime for this calculation was in the order of a month using 12 (two quad and
two dual) 2.66 GHz processors. Previously, using a number of techniques outlined in
this paper to speed up the fastest known algorithm [16,14], a run time of 1.5 years
was needed on similar hardware to find all l(n) with n ≤ 226. Clearly there must be a
huge amount of redundancy in calculating optimal addition chains for a single value
currently based on these numbers.

By modifying the bounding sequence defined in Theorems I and J such thatρ(n, s)={
1, if v(n) ≤ 2s

0, otherwise
it is possible to quickly search for counter examples to the Knuth–

Stolarsky conjecture [4, p. 470, 17]. This conjecture essentially asserts that S(n) ≥
log2 v(n) but the inequality appears in two different formats. No counter examples
were found for n ≤ 264.

In [18] Goulard asked if l(2n) = l(n)+ 1 and this was answered in the positive in
[19] but only verbal arguments were made. The conjecture appears again in [20] before
a counter example (l(191) = l(382)) was found with the aid of a computer by Knuth
[21]. Thurber proved there exist infinite sequences of n with l(2n) = l(n) in [22,23].
In [24] Granville asks if there is an n with l(n) = l(2n) = l(4n) and an equivalent
question appeared as a gap in position 4 in the sequence A115016 of [25]. We found
the first example for this with n = 30958077. At higher values, the first example
where l(2n) < l(n) was found with n = 375494703, 34 = l(2n) < l(n) = 35.

The Scholz–Brauer conjecture [3,26] asserts that l(2n−1) ≤ l(n)+n−1. Applying
the Theorems described above to the algorithms in [11,16,14] we were able to show
the conjecture was true for n < 5784689. This was achieved by showing all numbers
below this bound were so called Hansen numbers [4, pp 479, 10]. Strict equality was
noted in [17] as the only case seen for n ≤ 8 and this was extended to n ≤ 24 and
n = 32 in [27]. Computer calculations confirmed equality for n ≤ 28 [11,14,28] and
we confirmed equality for n ≤ 64.
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Table 2 New c(r) and d(r) values

r c(r) r c(r) r d(r) r d(r)

29 7624319 36 550040063 26 1896704 33 140588339

30 14143037 37 994660991 27 3501029 34 261070184

31 25450463 38 1886023151 28 6465774 35 485074788

32 46444543 39 3502562143 29 11947258 36 901751654

33 89209343 30 22087489 37 1677060520

34 155691199 31 40886910 38 3119775195

35 298695487 32 75763102

New techniques that allow the boundaries of what can be calculated to be enlarged
allow insight into how certain functions grow. Table 2 shows new values for d(r) =
|{n : l(n) = r}| (the total number of integers with a particular sized optimal addition
chain) and c(r) = min({n : l(n) = r}) (the smallest number with a particular sized
optimal addition chain).

These new values are in accordance with the conjecture that c(r) ∼ 2
r− r

log2 r given
in [14].

14 Conclusions and future research

Calculating optimal addition chains for multiple different numbers appears to contain
a great deal of overlapping calculations as we gain considerable speed ups by calculat-
ing them simultaneously. Exploiting required chain structures to prune early also has
a very large effect on runtimes. The location of the first non-Hansen number suggests
that attempts to prove the Scholz–Brauer conjecture by proving that among the optimal
addition chains there exists at least one Hansen chain cannot be successful in the long
run [29]. The Scholz–Brauer conjecture needs to be proved for non-Hansen numbers
to bridge the exposed gap. The non-Hansen number and the case l(2n) < l(n) appear
to be part of infinite sequences of such numbers and attempts to prove this might be
fruitful. Another interesting question might be to ask if l(n) and l(2n) can become
arbitrarily far apart. There may be much scope to find more graph rearrangements
as well as allowed and denied graph structures to further improve runtimes. Can the
bounding sequences of Sect. 10 be improved in general or by looking at the remain-
ing target numbers to be found? Can the linear bound of the in-degree in Sect. 7 be
improved? The work of Hansen proving that the binary method is optimal [10] for
numbers with large runs of zeros in their binary representations suggests we can only
improve the bounds based on the structure of the target.
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